Skip to Main Content
  • Instructor Site
  • Student Store
  • Canada StoreCanada
Student store Macmillan learning linkStudent Store Student store Macmillan learning linkStudent Store
    • I'M AN INSTRUCTOR

    • I'M A STUDENT
  • Student store Help link
  • search

    Find what you need to succeed.

    search icon
  • Shopping Cart
    0
    • Canada StoreCanada
  • Who We Are

    Who We Are

    back
    • Who We Are
  • Student Benefits

    Student Benefits

    back
    • Special Offers
    • Rent and Save
    • Flexible Formats
    • College Quest Blog
  • Discipline

    Discipline

    back
    • Astronomy Biochemistry Biology Chemistry College Success Communication Economics Electrical Engineering English Environmental Science Geography Geology History Mathematics Music & Theater Nutrition and Health Philosophy & Religion Physics Psychology Sociology Statistics Value
  • Digital Products

    Digital Products

    back
    • Achieve
    • E-books
    • iClicker Student App (Student Response System)
    • FlipIt
    • WebAssign
  • Support

    Support

    back
    • Get Help
    • Rental and Returns
    • Support Community
    • Student Options Explained

Cover: Universe, 11th Edition by Roger A. Freedman; Robert Geller; William J. Kaufmann
Rental FAQs

GET FREE SHIPPING!

Use Promo Code SHIPFREE at Step 4 of checkout.

*Free Shipping only applicable to US orders. Restrictions apply.

Universe

Instant Access
info icon

Eleventh  Edition|©2019  Roger A. Freedman; Robert Geller; William J. Kaufmann

  • Format
  • Packages
E-book from $69.99

ISBN:9781319227975

Take notes, add highlights, and download our mobile-friendly e-books.

$69.99
Subscribe until 11/08/2025

$104.99
Achieve $94.99

ISBN:9781319378530

Online course materials that will help you in this class. Includes access to e-book and iClicker Student.


$94.99
Subscribe until 10/12/2025

You will need to find your course in order to purchase Achieve.

A grace period may be available for this course.

Visit Achieve to find out.

Loose-Leaf $157.99

ISBN:9781319115012

Save money with our hole-punched, loose-leaf textbook.

$157.99
Paperback from $70.00

ISBN:9781319039448

Read and study old-school with our bound texts.

$70.00
Rent until 11/11/2025

Includes eBook Trial Access

(14-day)


$140.00
Rent until 05/10/2026

Includes eBook Trial Access

(14-day)


Loose-Leaf + Achieve $144.99

ISBN:9781319424473

This package includes Achieve and Loose-Leaf.

$144.99

You will need to find your course in order to purchase Achieve.

Paperback + Achieve from $148.99

This package includes Achieve and Paperback.

$148.99
Rent until 09/22/2025

Includes eBook Trial Access

(14-day)

You will need to find your course in order to purchase Achieve.


$163.99
Rent until 09/22/2025

Includes eBook Trial Access

(14-day)

You will need to find your course in order to purchase Achieve.

  • About
  • Digital Options
  • Contents
  • Authors

About

Universe by Robert M. Geller and Roger Freedman strikes the right balance between scientific rigor and a compelling narrative about the process of astronomical discovery. Covering material from our solar system out to other stars and galaxies, this text will prepare you for engaging with astronomy in all aspects of life, from looking up at the stars to evaluating the news and scientific claims.

Digital Options

E-book

Read online (or offline) with all the highlighting and notetaking tools you need to be successful in this course.

Learn More

Achieve

Achieve is a single, easy-to-use platform proven to engage students for better course outcomes

Learn More

Contents

Table of Contents

I Introducing Astronomy
1 Astronomy and the Universe

1-1 Astronomy and the Scientific Method
1-2 The Solar System
1-3 Stars and Stellar Evolution
1-4 Galaxies and Cosmology
1-5 Angles and Angular Measure
Box 1-1: The Small-Angle Formula
1-6 Powers of Ten
Box 1-2: Arithmetic with Powers-of-Ten Notation
1-7 Astronomical Distances
Box 1-3: Units of Length, Time and Mass
1-8 The Adventure of Astronomy
Cosmic Connections: Sizes in the Universe
Key Words and Ideas
Questions and Activities
Guest Essay Why Astronomy? Sandra M. Faber
 
2 Knowing the Heavens
2-1 Ancient Astronomy
2-2 Constellations
2-3 Motions of the Sky
2-4 The Celestial Sphere
2-5 The Seasons
Box 2-1: Celestial Coordinates
2-6 Precession
2-7 Time and Timekeeping
2-8 The Calendar
Box 2-2: Sidereal Time
Key Words and Ideas
Questions and Activities
Guest Essay Why Astrology Is Not Science James Randi
 
3 Eclipses and the Motion of the Moon
3-1 Phases of the Moon
Box 3-1: Phases and Shadows
3-2 The Moon’s Rotation
3-3 Eclipses and the Line of Nodes
3-4 Lunar Eclipses
3-5 Solar Eclipses
3-6 Measuring the Earth
Box 3-2: Predicting Solar Eclipses
Key Words and Ideas
Questions and Activities
Guest Essay Archaeoastronomy and Ethnoastronomy Mark Hollabaugh
 
4 Gravitation and the Waltz of the Planets

4-1 Geocentric Models
4-2 Copernicus and Heliocentric Models
Box 4-1: Relating Synodic and Sidereal Periods
4-3 Tycho Brahe’s Observations
4-4 Kepler and the Orbits of the Planets
Box 4-2: Using Kepler’s Third Law
4-5 Galileo and the Telescope
4-6 Newton’s Laws of Motion
Box 4-3: Newton’s Laws in Everyday Life
4-7 Energy and Gravity
Box 4-4: Newton’s Form of Kepler’s Third Law
Cosmic Connections Universal Gravitation
4-8 Tides and the Moon
Key Words and Ideas
Questions and Activities
 
5 The Nature of Light
5-1 The Speed of Light
5-2 The Wave Nature of Light
5-3 Blackbody Radiation
Box 5-1: Temperatures and Temperature Scales
5-4 Wien’s Law and the Stefan-Boltzmann Law
Box 5-2: Using the Laws of Blackbody Radiation
5-5 The Particle Nature of Light
Box 5-3: Photons at the Supermarket
5-6 Kirchhoff’s Laws
Box 5-4: Why the Sky is Blue
5-7 Atomic Structure
Box 5-5: Atoms, the Periodic Table, and Isotopes
5-8 Spectral Lines and the Bohr Model
5-9 The Doppler Effect
Box 5-6: Applications of the Doppler Effect
Key Words and Ideas
Questions and Activities


6 Optics and Telescopes
6-1 Refracting Telescopes
Box 6-1 Magnification and Light-Gathering Power
6-2 Reflecting Telescopes
6-3 Angular Resolution
6-4 Charge-Coupled Devices (CCDs)
6-5 Spectrographs
6-6 Radio Telescopes
6-7 Telescopes in Space
Cosmic Connections Telescopes Across the EM Spectrum
Key Words and Ideas
Questions and Activities
 
II Planets and Moons
7 Comparative Planetology I: Our Solar System

7-1 Terrestrial and Jovian Planets
Box 7-1: Average Density
7-2 Satellites of the Planets
7-3 The Evidence of Spectroscopy
7-4 Chemical Composition of the Planets
7-5 Asteroids, Trans-Neptunian Objects, and Comets
Box 7-2 Kinetic Energy, Temperature, and Whether Planets Have Atmospheres
7-6 Cratering and Impacts
7-7 Magnetic Fields and the Interiors of Planets
7-8 Solar System Diversity
Cosmic Connections Characteristics of the Planets
Key Words and Ideas
Questions and Activities
 
8 Comparative Planetology II: The Origin of the Solar System
8-1 Models of Solar System Diversity
8-2 Abundances of the Elements
8-3 The Age of the Solar System
Box 8-1 Radioactive Dating
8-4 The Origin of the Solar System
8-5 Forming the Terrestrial Planets
8-6 Forming the Jovian Planets
8-7 Extrasolar Planets
Key Words and Ideas
Questions and Activities
Guest Essay Climate Change Misconceptions

9 The Living Earth
9-1 Earth’s Energy Sources
9-2 Earthquakes and Earth’s Interior
9-3 Plate Tectonics
9-4 Earth’s Magnetic Field
9-5 Earth’s Evolving Atmosphere
9-6 Circulation in Earth’s Atmosphere
Cosmic Connections Comparing Earth’s Atmosphere and Interior
9-7 Human Influence on Earth’s Biosphere
Key Words and Ideas
Questions and Activities
 
10 Our Barren Moon
10-1 The Moon’s Airless Surface
Cosmic Connections The Formation of the Craters and Maria on the Moon
10-2 Voyages to the Moon
10-3 The Moon’s Interior
Box 10-1 Calculating Tidal Forces
10-4 Moon Rocks
10-5 The Formation of the Moon
Key Words and Ideas
Questions and Activities
 
11 Mercury, Venus, and Mars: Earthlike yet Unique
11-1 Mercury, Venus, and Mars as Seen from Earth
11-2 The Curious Rotation of Mercury and Venus
11-3 Mercury’s Surface and Interior
11-4 Missions to Venus and Mars
11-5 Volcanoes and Craters on Venus and Mars
11-6 The Atmospheres of Venus and Mars
11-7 Climate Evolution on Venus and Mars
Cosmic Connections Evolution of Terrestrial Atmospheres
11-8 Searching for Ancient Martian Water
11-9 The Moons of Mars
Key Words and Ideas
Questions and Activities
Scientific American Article Reading the Red Planet John P. Grotzinger and Ashwin Vasavada

12 Jupiter and Saturn: Lords of the Planets
12-1 Jupiter and Saturn as Seen from Earth
12-2 Jupiter and Saturn’s Rotation and Structure
12-3 The Clouds of Jupiter and Saturn
12-4 Atmospheric Motions on Jupiter and Saturn
12-5 Probing Jupiter’s Atmosphere
12-6 The Rocky Cores of Jupiter and Saturn
12-7 The Magnetic Fields of Jupiter and Saturn
12-8 Discovering Saturn’s Rings
12-9 The Composition of Saturn’s and Jupiter’s Rings
10-10 The Structure of Saturn’s Rings
Cosmic Connections Planetary Rings and the Roche Limit
12-11 Rings and Shepherd Satellites
Key Words and Ideas
Questions and Activities
 
13 Jupiter and Saturn’s Satellites of Fire and Ice
13-1 Jupiter’s Galilean Satellites as Seen from Earth
13-2 Sizes, Masses, and Densities of the Galilean Satellites
13-3 Formation of the Galilean Satellites
13-4 Io’s Active Volcanoes
13-5 Electric Currents in Io
13-6 Europa’s Icy Crust
13-7 Cratered Ganymede and Callisto
13-8 Exploring Titan’s Hydrocarbon Atmosphere
13-9 Jupiter’s Swarm of Small Satellites
13-10 Saturn’s Other Icy Satellites
Key Words and Ideas
Questions and Activities
 
14 Uranus, Neptune, Pluto, and the Kuiper Belt: Remote Worlds
14-1 Discovering Uranus and Neptune
14-2 Weather and Seasons on Uranus
14-3 Cloud Patterns on Neptune
14-4 Inside Uranus and Neptune
14-5 Magnetic Fields of Uranus and Neptune
14-6 The Rings of Uranus and Neptune
Cosmic Connections The Outer Planets: A Comparison
14-7 Uranus’s Satellites
14-8 Neptune’s Satellites
14-9 Pluto and Its Satellites
14-10 Trans-Neptunian Objects
Key Words and Ideas
Questions and Activities
 
15 Vagabonds of the Solar System
15-1 The Discovery of the Asteroids
15-2 Jupiter and the Asteroid Belt
15-3 The Nature of Asteroids
15-4 Impacts on Earth
Cosmic Connections A Killer Asteroid
15-5 Classifying Meteorites
15-6 Meteorites and Our Origins
15-7 Comets
15-8 Comet Origins and Meteor Showers
Key Words and Ideas
Questions and Activities
Guest Essay Pluto and the Kuiper Belt Scott Sheppard
 
III Stars and Stellar Evolution
16 Our Star, the Sun
16-1 Thermonuclear Energy
Cosmic Connections Proton-Proton Chain
Box 16-1 Converting Mass into Energy
16-2 A Model of the Sun
16-3 Solar Seismology
16-4 Solar Neutrinos
16-5 The Photosphere
16-6 The Chromosphere
16-7 The Corona
16-8 Sunspots
16-9 The Sunspot Cycle
16-10 The Active Sun
Key Words and Ideas
Questions and Activities
 
17 The Nature of the Stars
17-1 Stellar Distances and Parallax
Box 17-1 Stellar Motions
17-2 apparent Brightness and Luminosity
Box 17-2 Luminosity, Distance, and Apparent Brightness
17-3 The Magnitude Scale
Box 17-3 Apparent Magnitude and Absolute Magnitude
17-4 Star Colors and Temperatures
17-5 Spectral Classes
Box 17-4 Stellar Radii, Luminosities, and Surface Temperatures
17-6 The Sizes of Stars
17-7 The Hertzsprung-Russell Diagram
17-8 Spectroscopic Parallax
17-9 Binary Stars and Stellar Masses
Cosmic Connections The main Sequence and Masses
17-10 Spectroscopy and Close Binaries
17-11 Eclipsing Binaries
Key Words and Ideas
Questions and Activities
 
18 The Birth of Stars
18-1 Modeling Stellar Evolution
18-2 The Interstellar Medium
Box 18-1 Fluorescent Lights
18-3 Protostars and Dark Nebulae
18-4 Reaching the Main Sequence
18-5 Mass Ejection and Accretion
18-6 Young Stars and H II Regions
18-7 Giant Molecular Clouds
18-8 Supernovae and Star Birth
Cosmic Connections How Stars are Born
Key Words and Ideas
Questions and Activities
 
19 Stellar Evolution: On and After the Main Sequence
19-1 Evolution on the Main Sequence
Box 19-1 Compressing and Expanding Gases
19-2 Red Giants
Box 19-2 Main-Sequence Lifetimes
19-3 Helium Fusion
Cosmic Connections Helium Fusion in a Red Giant
19-4 Star Clusters and Stellar Evolution
19-5 Population I and II Stars
19-6 Pulsating Stars
19-7 Mass Transfer in Close Binaries
Key Words and Ideas
Questions and Activities
 
20 Stellar Evolution: The Deaths of Stars
20-1 A Second Red-Giant Phase
20-2 Drudge-up and Carbon Stars
20-3 Planetary Nebulae
20-4 White Dwarfs
20-5 The Creation of Heavy Elements
Cosmic Connections Our Sun: The Next Eight Million Years
20-6 Core-Collapse Supernovae
20-7 Supernova 1987A
20-8 Detecting Supernova Neutrinos
20-9 White Dwarfs and Supernovae
20-10 Supernova Remnants
20-11 Neutrons and Neutron Stars
20-12 Novae and X-ray Bursters
Key Words and Ideas
Questions and Activities
 
21 Black Holes
21-1 The Special Theory of Relativity
Box 21-1 Time Dilation and Length Contraction
21-2 The General Theory of Relativity
21-3 Black Holes in Binary Stems
21-4 Detecting Gravitational Waves
21-5 Gamma-Ray Busters
21-6 Supermassive Black Holes
21-7 The Event Horizon
Box 21-2 The Schwarzschild Radius
21-8 Mass, Charge, and Spin
Cosmic Connections Black Hole “Urban Legends”
21-9 Falling into a Black Hole
21-10 Evaporating Black Holes
Key Words and Ideas
Questions and Activities
 
IV Galaxies and Cosmology
22 Our Galaxy
22-1 Our Place in the Galaxy
22-2 The Galaxy’s Shape and Size
22-3 Spiral Arms
Box 22-1 Spin-Flip Transitions in Medicine
22-4 The Sun’s Orbit and Dark Matter
22-5 Density Waves
Cosmic Connections Stars in the Milky Way
22-6 At the Center of the Galaxy
Key Words and Ideas
Questions and Activities
 
23 Galaxies
23-1 Island Universe
23-2 The Distances to Galaxies
Box 23-1 Cepheids and Supernovae as Indicators of Distance
23-3 Classifying Galaxies
23-4 The Distance Ladder
23-5 The Hubble Law
Box 23-2 The Hubble Law and the Relativistic Redshift
23-6 Clusters and Superclusters
23-7 Colliding Galaxies
Cosmic Connections When Galaxies Collide
23-8 Dark Matter in the Universe
23-9 The Evolution of the Galaxies
Key Words and Ideas
Questions and Activities
 
24 Quasars and Active Galaxies
24-1 Ultraluminous Galactic Nuclei
24-2 Black Holes as “Central Engines”
24-3 Accretion Disks and Jets
24-4 A Unified Model
Cosmic Connections Accretion Disks
24-4 Evolution of Active Galactic Nuclei
Box 24-1: The Diversity of AGN
Key Words and Ideas
Questions and Activities
 
25 Cosmology: The Origin and Evolution of the Universe
25-1 The Dark Night Sky
25-2 The Expanding Universe
Cosmic Connections “Urban Legends” about the Expanding Universe
25-3 The Big Bang
25-4 The Cosmic Microwave Background
25-5 The Universe Before Recombination
25-6 The Shape of the Universe
25-7 Dark Energy and the Accelerating Universe
25-8 Primordial Sound Waves
Key Words and Ideas
Questions and Activities
Scientific American Article Dark Forces at Work David Appell
 
26 Exploring the Early Universe
26-1 Cosmic Inflation
26-2 The Fundamental Forces and Symmetry Breaking
26-3 Matter, Antimatter, and the Uncertainty Principle
26-4 Matter-Antimatter Annihilation
26-5 Relics of the Primordial Fireball
26-6 The First Stars and Galaxies
Cosmic Connections The History of the Universe
26-7 String Theory and the Dimensions of Spacetime
Key Words and Ideas
Questions and Activities
Scientific American Article Making Sense of Modern Cosmology P. James E. Peebles
 
27 The Search for Extraterrestrial Life
27-1 Building Blocks of Life
27-2 Life in the Solar System
27-3 Meteorites from Mars
27-4 The Drake Equation
Cosmic Connections Habitable Zones for Life
27-5 Radio Searches for Civilizations
27-6 Searches for Planets
Key Words and Ideas
Questions and Activities
Guest Essay A Biologist’s View of Astrobiology Kevin W. Plaxco
 
Appendices
1. The Planets: Orbital Data
2. The Planets: Physical Data
3. Satellites of the Planets
4. The Nearest Stars
5. The Visually Brightest Stars
6. Some Important Astronomical Quantities
7. Some Important Physical Constants
8. Some Useful Mathematics
 
Glossary
Answers to Selected Questions
Index
Northern Hemisphere Star Charts

Authors

Roger Freedman

Dr. Roger A. Freedman is a Lecturer in Physics at the University of California, Santa Barbara.

He was an undergraduate at the University of California campuses in San Diego and Los Angeles, and did his doctoral research in theoretical nuclear physics at Stanford University. He came to UCSB in 1981 after three years of teaching and doing research at the University of Washington. At UCSB, Dr. Freedman has taught in both the Department of Physics and the College of Creative Studies, a branch of the university intended for highly gifted and motivated undergraduates. In recent years, he has helped to develop computer-based tools for learning introductory physics and astronomy and has been a pioneer in the use of classroom response systems and the “flipped” classroom model at UCSB. Roger holds a commercial pilot’s license and was an early organizer of the San Diego Comic-Con, now the world’s largest popular culture convention.


Robert Geller

Robert M. Geller teaches and conducts research in astrophysics at the University of California, Santa Barbara, where he also obtained his Ph.D.

His doctoral research was in observational cosmology under Professor Robert Antonucci. Using data from the Hubble Space Telescope, he is currently involved in a search for bursts of light that are predicted to occur when a supermassive black hole consumes a star. His other project, in biomedicine,
explores the use of magnetotactic bacteria to enhance the effectiveness of radiation therapy in treating cancer. Dr. Geller also has a strong emphasis on education, and he received the Distinguished Teaching Award at UCSB in 2003.

His hobbies include rock climbing, and he built an unusual telescope
with lenses made of water.


William J. Kaufmann

William J. Kaufman III was author of the first four editions of Universe.  Born in New York City on December 27, 1942, he often visited the magnificent Hayden Planetarium as he was growing up.  Dr. Kaufmann earned his bachelors degree magna cum laude in physics from Adelphi University in 1963, a masters degree in physics from Rutgers in 1965, and a Ph.D. in astrophysics from Indiana University in 1968.  At 27 he became the youngest director of any major planetarium in the United States when he took the helm of the Griffith Observatory in Los Angeles.  During his career he also held positions at San Diego State University, UCLA, Caltech, and the University of Illinois.  Throughout his professional life as a scientist and educator, Dr. Kaufmann worked to bridge the gap between the scientific community and the general public to help the public share in the advances of astronomy.  A prolific author, his many books include Black Holes and Warped Spacetime, Relativity and Cosmology, The Cosmic Frontiers of General Relativity, Exploration of the Solar System, Planets and Moons, Stars and Nebulas, Galaxies and Quasars, and Supercomputing and the Transformation of Science.  Dr. Kaufmann died in 1994.


William J. Kaufmann


Explore Scientific Reasoning by Exploring the Universe

Universe by Robert M. Geller and Roger Freedman strikes the right balance between scientific rigor and a compelling narrative about the process of astronomical discovery. Covering material from our solar system out to other stars and galaxies, this text will prepare you for engaging with astronomy in all aspects of life, from looking up at the stars to evaluating the news and scientific claims.

E-book

Read online (or offline) with all the highlighting and notetaking tools you need to be successful in this course.

Learn More

Achieve

Achieve is a single, easy-to-use platform proven to engage students for better course outcomes

Learn More

Table of Contents

I Introducing Astronomy
1 Astronomy and the Universe

1-1 Astronomy and the Scientific Method
1-2 The Solar System
1-3 Stars and Stellar Evolution
1-4 Galaxies and Cosmology
1-5 Angles and Angular Measure
Box 1-1: The Small-Angle Formula
1-6 Powers of Ten
Box 1-2: Arithmetic with Powers-of-Ten Notation
1-7 Astronomical Distances
Box 1-3: Units of Length, Time and Mass
1-8 The Adventure of Astronomy
Cosmic Connections: Sizes in the Universe
Key Words and Ideas
Questions and Activities
Guest Essay Why Astronomy? Sandra M. Faber
 
2 Knowing the Heavens
2-1 Ancient Astronomy
2-2 Constellations
2-3 Motions of the Sky
2-4 The Celestial Sphere
2-5 The Seasons
Box 2-1: Celestial Coordinates
2-6 Precession
2-7 Time and Timekeeping
2-8 The Calendar
Box 2-2: Sidereal Time
Key Words and Ideas
Questions and Activities
Guest Essay Why Astrology Is Not Science James Randi
 
3 Eclipses and the Motion of the Moon
3-1 Phases of the Moon
Box 3-1: Phases and Shadows
3-2 The Moon’s Rotation
3-3 Eclipses and the Line of Nodes
3-4 Lunar Eclipses
3-5 Solar Eclipses
3-6 Measuring the Earth
Box 3-2: Predicting Solar Eclipses
Key Words and Ideas
Questions and Activities
Guest Essay Archaeoastronomy and Ethnoastronomy Mark Hollabaugh
 
4 Gravitation and the Waltz of the Planets

4-1 Geocentric Models
4-2 Copernicus and Heliocentric Models
Box 4-1: Relating Synodic and Sidereal Periods
4-3 Tycho Brahe’s Observations
4-4 Kepler and the Orbits of the Planets
Box 4-2: Using Kepler’s Third Law
4-5 Galileo and the Telescope
4-6 Newton’s Laws of Motion
Box 4-3: Newton’s Laws in Everyday Life
4-7 Energy and Gravity
Box 4-4: Newton’s Form of Kepler’s Third Law
Cosmic Connections Universal Gravitation
4-8 Tides and the Moon
Key Words and Ideas
Questions and Activities
 
5 The Nature of Light
5-1 The Speed of Light
5-2 The Wave Nature of Light
5-3 Blackbody Radiation
Box 5-1: Temperatures and Temperature Scales
5-4 Wien’s Law and the Stefan-Boltzmann Law
Box 5-2: Using the Laws of Blackbody Radiation
5-5 The Particle Nature of Light
Box 5-3: Photons at the Supermarket
5-6 Kirchhoff’s Laws
Box 5-4: Why the Sky is Blue
5-7 Atomic Structure
Box 5-5: Atoms, the Periodic Table, and Isotopes
5-8 Spectral Lines and the Bohr Model
5-9 The Doppler Effect
Box 5-6: Applications of the Doppler Effect
Key Words and Ideas
Questions and Activities


6 Optics and Telescopes
6-1 Refracting Telescopes
Box 6-1 Magnification and Light-Gathering Power
6-2 Reflecting Telescopes
6-3 Angular Resolution
6-4 Charge-Coupled Devices (CCDs)
6-5 Spectrographs
6-6 Radio Telescopes
6-7 Telescopes in Space
Cosmic Connections Telescopes Across the EM Spectrum
Key Words and Ideas
Questions and Activities
 
II Planets and Moons
7 Comparative Planetology I: Our Solar System

7-1 Terrestrial and Jovian Planets
Box 7-1: Average Density
7-2 Satellites of the Planets
7-3 The Evidence of Spectroscopy
7-4 Chemical Composition of the Planets
7-5 Asteroids, Trans-Neptunian Objects, and Comets
Box 7-2 Kinetic Energy, Temperature, and Whether Planets Have Atmospheres
7-6 Cratering and Impacts
7-7 Magnetic Fields and the Interiors of Planets
7-8 Solar System Diversity
Cosmic Connections Characteristics of the Planets
Key Words and Ideas
Questions and Activities
 
8 Comparative Planetology II: The Origin of the Solar System
8-1 Models of Solar System Diversity
8-2 Abundances of the Elements
8-3 The Age of the Solar System
Box 8-1 Radioactive Dating
8-4 The Origin of the Solar System
8-5 Forming the Terrestrial Planets
8-6 Forming the Jovian Planets
8-7 Extrasolar Planets
Key Words and Ideas
Questions and Activities
Guest Essay Climate Change Misconceptions

9 The Living Earth
9-1 Earth’s Energy Sources
9-2 Earthquakes and Earth’s Interior
9-3 Plate Tectonics
9-4 Earth’s Magnetic Field
9-5 Earth’s Evolving Atmosphere
9-6 Circulation in Earth’s Atmosphere
Cosmic Connections Comparing Earth’s Atmosphere and Interior
9-7 Human Influence on Earth’s Biosphere
Key Words and Ideas
Questions and Activities
 
10 Our Barren Moon
10-1 The Moon’s Airless Surface
Cosmic Connections The Formation of the Craters and Maria on the Moon
10-2 Voyages to the Moon
10-3 The Moon’s Interior
Box 10-1 Calculating Tidal Forces
10-4 Moon Rocks
10-5 The Formation of the Moon
Key Words and Ideas
Questions and Activities
 
11 Mercury, Venus, and Mars: Earthlike yet Unique
11-1 Mercury, Venus, and Mars as Seen from Earth
11-2 The Curious Rotation of Mercury and Venus
11-3 Mercury’s Surface and Interior
11-4 Missions to Venus and Mars
11-5 Volcanoes and Craters on Venus and Mars
11-6 The Atmospheres of Venus and Mars
11-7 Climate Evolution on Venus and Mars
Cosmic Connections Evolution of Terrestrial Atmospheres
11-8 Searching for Ancient Martian Water
11-9 The Moons of Mars
Key Words and Ideas
Questions and Activities
Scientific American Article Reading the Red Planet John P. Grotzinger and Ashwin Vasavada

12 Jupiter and Saturn: Lords of the Planets
12-1 Jupiter and Saturn as Seen from Earth
12-2 Jupiter and Saturn’s Rotation and Structure
12-3 The Clouds of Jupiter and Saturn
12-4 Atmospheric Motions on Jupiter and Saturn
12-5 Probing Jupiter’s Atmosphere
12-6 The Rocky Cores of Jupiter and Saturn
12-7 The Magnetic Fields of Jupiter and Saturn
12-8 Discovering Saturn’s Rings
12-9 The Composition of Saturn’s and Jupiter’s Rings
10-10 The Structure of Saturn’s Rings
Cosmic Connections Planetary Rings and the Roche Limit
12-11 Rings and Shepherd Satellites
Key Words and Ideas
Questions and Activities
 
13 Jupiter and Saturn’s Satellites of Fire and Ice
13-1 Jupiter’s Galilean Satellites as Seen from Earth
13-2 Sizes, Masses, and Densities of the Galilean Satellites
13-3 Formation of the Galilean Satellites
13-4 Io’s Active Volcanoes
13-5 Electric Currents in Io
13-6 Europa’s Icy Crust
13-7 Cratered Ganymede and Callisto
13-8 Exploring Titan’s Hydrocarbon Atmosphere
13-9 Jupiter’s Swarm of Small Satellites
13-10 Saturn’s Other Icy Satellites
Key Words and Ideas
Questions and Activities
 
14 Uranus, Neptune, Pluto, and the Kuiper Belt: Remote Worlds
14-1 Discovering Uranus and Neptune
14-2 Weather and Seasons on Uranus
14-3 Cloud Patterns on Neptune
14-4 Inside Uranus and Neptune
14-5 Magnetic Fields of Uranus and Neptune
14-6 The Rings of Uranus and Neptune
Cosmic Connections The Outer Planets: A Comparison
14-7 Uranus’s Satellites
14-8 Neptune’s Satellites
14-9 Pluto and Its Satellites
14-10 Trans-Neptunian Objects
Key Words and Ideas
Questions and Activities
 
15 Vagabonds of the Solar System
15-1 The Discovery of the Asteroids
15-2 Jupiter and the Asteroid Belt
15-3 The Nature of Asteroids
15-4 Impacts on Earth
Cosmic Connections A Killer Asteroid
15-5 Classifying Meteorites
15-6 Meteorites and Our Origins
15-7 Comets
15-8 Comet Origins and Meteor Showers
Key Words and Ideas
Questions and Activities
Guest Essay Pluto and the Kuiper Belt Scott Sheppard
 
III Stars and Stellar Evolution
16 Our Star, the Sun
16-1 Thermonuclear Energy
Cosmic Connections Proton-Proton Chain
Box 16-1 Converting Mass into Energy
16-2 A Model of the Sun
16-3 Solar Seismology
16-4 Solar Neutrinos
16-5 The Photosphere
16-6 The Chromosphere
16-7 The Corona
16-8 Sunspots
16-9 The Sunspot Cycle
16-10 The Active Sun
Key Words and Ideas
Questions and Activities
 
17 The Nature of the Stars
17-1 Stellar Distances and Parallax
Box 17-1 Stellar Motions
17-2 apparent Brightness and Luminosity
Box 17-2 Luminosity, Distance, and Apparent Brightness
17-3 The Magnitude Scale
Box 17-3 Apparent Magnitude and Absolute Magnitude
17-4 Star Colors and Temperatures
17-5 Spectral Classes
Box 17-4 Stellar Radii, Luminosities, and Surface Temperatures
17-6 The Sizes of Stars
17-7 The Hertzsprung-Russell Diagram
17-8 Spectroscopic Parallax
17-9 Binary Stars and Stellar Masses
Cosmic Connections The main Sequence and Masses
17-10 Spectroscopy and Close Binaries
17-11 Eclipsing Binaries
Key Words and Ideas
Questions and Activities
 
18 The Birth of Stars
18-1 Modeling Stellar Evolution
18-2 The Interstellar Medium
Box 18-1 Fluorescent Lights
18-3 Protostars and Dark Nebulae
18-4 Reaching the Main Sequence
18-5 Mass Ejection and Accretion
18-6 Young Stars and H II Regions
18-7 Giant Molecular Clouds
18-8 Supernovae and Star Birth
Cosmic Connections How Stars are Born
Key Words and Ideas
Questions and Activities
 
19 Stellar Evolution: On and After the Main Sequence
19-1 Evolution on the Main Sequence
Box 19-1 Compressing and Expanding Gases
19-2 Red Giants
Box 19-2 Main-Sequence Lifetimes
19-3 Helium Fusion
Cosmic Connections Helium Fusion in a Red Giant
19-4 Star Clusters and Stellar Evolution
19-5 Population I and II Stars
19-6 Pulsating Stars
19-7 Mass Transfer in Close Binaries
Key Words and Ideas
Questions and Activities
 
20 Stellar Evolution: The Deaths of Stars
20-1 A Second Red-Giant Phase
20-2 Drudge-up and Carbon Stars
20-3 Planetary Nebulae
20-4 White Dwarfs
20-5 The Creation of Heavy Elements
Cosmic Connections Our Sun: The Next Eight Million Years
20-6 Core-Collapse Supernovae
20-7 Supernova 1987A
20-8 Detecting Supernova Neutrinos
20-9 White Dwarfs and Supernovae
20-10 Supernova Remnants
20-11 Neutrons and Neutron Stars
20-12 Novae and X-ray Bursters
Key Words and Ideas
Questions and Activities
 
21 Black Holes
21-1 The Special Theory of Relativity
Box 21-1 Time Dilation and Length Contraction
21-2 The General Theory of Relativity
21-3 Black Holes in Binary Stems
21-4 Detecting Gravitational Waves
21-5 Gamma-Ray Busters
21-6 Supermassive Black Holes
21-7 The Event Horizon
Box 21-2 The Schwarzschild Radius
21-8 Mass, Charge, and Spin
Cosmic Connections Black Hole “Urban Legends”
21-9 Falling into a Black Hole
21-10 Evaporating Black Holes
Key Words and Ideas
Questions and Activities
 
IV Galaxies and Cosmology
22 Our Galaxy
22-1 Our Place in the Galaxy
22-2 The Galaxy’s Shape and Size
22-3 Spiral Arms
Box 22-1 Spin-Flip Transitions in Medicine
22-4 The Sun’s Orbit and Dark Matter
22-5 Density Waves
Cosmic Connections Stars in the Milky Way
22-6 At the Center of the Galaxy
Key Words and Ideas
Questions and Activities
 
23 Galaxies
23-1 Island Universe
23-2 The Distances to Galaxies
Box 23-1 Cepheids and Supernovae as Indicators of Distance
23-3 Classifying Galaxies
23-4 The Distance Ladder
23-5 The Hubble Law
Box 23-2 The Hubble Law and the Relativistic Redshift
23-6 Clusters and Superclusters
23-7 Colliding Galaxies
Cosmic Connections When Galaxies Collide
23-8 Dark Matter in the Universe
23-9 The Evolution of the Galaxies
Key Words and Ideas
Questions and Activities
 
24 Quasars and Active Galaxies
24-1 Ultraluminous Galactic Nuclei
24-2 Black Holes as “Central Engines”
24-3 Accretion Disks and Jets
24-4 A Unified Model
Cosmic Connections Accretion Disks
24-4 Evolution of Active Galactic Nuclei
Box 24-1: The Diversity of AGN
Key Words and Ideas
Questions and Activities
 
25 Cosmology: The Origin and Evolution of the Universe
25-1 The Dark Night Sky
25-2 The Expanding Universe
Cosmic Connections “Urban Legends” about the Expanding Universe
25-3 The Big Bang
25-4 The Cosmic Microwave Background
25-5 The Universe Before Recombination
25-6 The Shape of the Universe
25-7 Dark Energy and the Accelerating Universe
25-8 Primordial Sound Waves
Key Words and Ideas
Questions and Activities
Scientific American Article Dark Forces at Work David Appell
 
26 Exploring the Early Universe
26-1 Cosmic Inflation
26-2 The Fundamental Forces and Symmetry Breaking
26-3 Matter, Antimatter, and the Uncertainty Principle
26-4 Matter-Antimatter Annihilation
26-5 Relics of the Primordial Fireball
26-6 The First Stars and Galaxies
Cosmic Connections The History of the Universe
26-7 String Theory and the Dimensions of Spacetime
Key Words and Ideas
Questions and Activities
Scientific American Article Making Sense of Modern Cosmology P. James E. Peebles
 
27 The Search for Extraterrestrial Life
27-1 Building Blocks of Life
27-2 Life in the Solar System
27-3 Meteorites from Mars
27-4 The Drake Equation
Cosmic Connections Habitable Zones for Life
27-5 Radio Searches for Civilizations
27-6 Searches for Planets
Key Words and Ideas
Questions and Activities
Guest Essay A Biologist’s View of Astrobiology Kevin W. Plaxco
 
Appendices
1. The Planets: Orbital Data
2. The Planets: Physical Data
3. Satellites of the Planets
4. The Nearest Stars
5. The Visually Brightest Stars
6. Some Important Astronomical Quantities
7. Some Important Physical Constants
8. Some Useful Mathematics
 
Glossary
Answers to Selected Questions
Index
Northern Hemisphere Star Charts

Headshot of Roger Freedman

Roger Freedman

Dr. Roger A. Freedman is a Lecturer in Physics at the University of California, Santa Barbara.

He was an undergraduate at the University of California campuses in San Diego and Los Angeles, and did his doctoral research in theoretical nuclear physics at Stanford University. He came to UCSB in 1981 after three years of teaching and doing research at the University of Washington. At UCSB, Dr. Freedman has taught in both the Department of Physics and the College of Creative Studies, a branch of the university intended for highly gifted and motivated undergraduates. In recent years, he has helped to develop computer-based tools for learning introductory physics and astronomy and has been a pioneer in the use of classroom response systems and the “flipped” classroom model at UCSB. Roger holds a commercial pilot’s license and was an early organizer of the San Diego Comic-Con, now the world’s largest popular culture convention.


Headshot of Robert Geller

Robert Geller

Robert M. Geller teaches and conducts research in astrophysics at the University of California, Santa Barbara, where he also obtained his Ph.D.

His doctoral research was in observational cosmology under Professor Robert Antonucci. Using data from the Hubble Space Telescope, he is currently involved in a search for bursts of light that are predicted to occur when a supermassive black hole consumes a star. His other project, in biomedicine,
explores the use of magnetotactic bacteria to enhance the effectiveness of radiation therapy in treating cancer. Dr. Geller also has a strong emphasis on education, and he received the Distinguished Teaching Award at UCSB in 2003.

His hobbies include rock climbing, and he built an unusual telescope
with lenses made of water.


Headshot of William J. Kaufmann

William J. Kaufmann

William J. Kaufman III was author of the first four editions of Universe.  Born in New York City on December 27, 1942, he often visited the magnificent Hayden Planetarium as he was growing up.  Dr. Kaufmann earned his bachelors degree magna cum laude in physics from Adelphi University in 1963, a masters degree in physics from Rutgers in 1965, and a Ph.D. in astrophysics from Indiana University in 1968.  At 27 he became the youngest director of any major planetarium in the United States when he took the helm of the Griffith Observatory in Los Angeles.  During his career he also held positions at San Diego State University, UCLA, Caltech, and the University of Illinois.  Throughout his professional life as a scientist and educator, Dr. Kaufmann worked to bridge the gap between the scientific community and the general public to help the public share in the advances of astronomy.  A prolific author, his many books include Black Holes and Warped Spacetime, Relativity and Cosmology, The Cosmic Frontiers of General Relativity, Exploration of the Solar System, Planets and Moons, Stars and Nebulas, Galaxies and Quasars, and Supercomputing and the Transformation of Science.  Dr. Kaufmann died in 1994.


Headshot of William J. Kaufmann

William J. Kaufmann


Related Titles

Find Your School

Select Your Discipline

Select Your Course

search icon
No schools matching your search criteria were found !
No active courses are available for this school.
No active courses are available for this discipline.
Can't find your course?

Find Your Course

Confirm Your Course

Enter the course ID provided by your instructor
search icon

We found the following course. Does this look correct?

We found the following course. To properly enroll in your course, please use the link provided in your school's course system (LMS Example: Canvas, Blackboard, D2L, Etc).

Your Achieve account needs to be linked with your school's account.

Find Your School

Select Your Course

No schools matching your search criteria were found.
(Optional)
Select Your Course
No Courses found for your selection.
  • macmillanlearning.com
  • // Privacy Notice
  • // Ads & Cookies
  • // Terms of Purchase/Rental
  • // Terms of Use
  • // Piracy
  • // Products
  • // Site Map
  • // Customer Support
Student store Footer Logo
  • macmillan learning facebook
  • macmillan learning twitter
  • macmillan learning youtube
  • macmillan learning linkedin
  • macmillan learning instagram
We are processing your request. Please wait...