Skip to Main Content
  • Instructor Site
  • Student Store
  • Canada StoreCanada
Student store Macmillan learning linkStudent Store Student store Macmillan learning linkStudent Store
    • I'M AN INSTRUCTOR

    • I'M A STUDENT
  • Student store Help link
  • search

    Find what you need to succeed.

    search icon
  • Shopping Cart
    0
    • Canada StoreCanada
  • Who We Are

    Who We Are

    back
    • Who We Are
  • Student Benefits

    Student Benefits

    back
    • Special Offers
    • Rent and Save
    • Flexible Formats
    • College Quest Blog
  • Discipline

    Discipline

    back
    • Astronomy Biochemistry Biology Chemistry College Success Communication Economics Electrical Engineering English Environmental Science Geography Geology History Mathematics Music & Theater Nutrition and Health Philosophy & Religion Physics Psychology Sociology Statistics Value
  • Digital Products

    Digital Products

    back
    • Achieve
    • E-books
    • iClicker Student App (Student Response System)
    • WebAssign
  • Support

    Support

    back
    • Get Help
    • Rental and Returns
    • Support Community
    • Student Options Explained

Cover: Calculus: Late Transcendentals Single Variable, 4th Edition by Jon Rogawski; Colin Adams; Robert Franzosa
Rental FAQs

GET FREE SHIPPING!

Use Promo Code SHIPFREE at Step 4 of checkout.

*Free Shipping only applicable to US orders. Restrictions apply.

Calculus: Late Transcendentals Single Variable

Instant Access
info icon

Fourth  Edition|©2019  Jon Rogawski; Colin Adams; Robert Franzosa

  • Format
  • Study Extras
E-book from $78.99

ISBN:9781319270391

Take notes, add highlights, and download our mobile-friendly e-books.

$78.99
Subscribe until 12/17/2025

$117.99
Paperback from $70.00

ISBN:9781319055776

Read and study old-school with our bound texts.

$70.00
Rent until 12/20/2025

Includes eBook Trial Access

(14-day)


$140.00
Rent until 06/18/2026

Includes eBook Trial Access

(14-day)


Student Solutions Manual for Calculus: Late Transcendentals Single Variable $87.99

ISBN:9781319254438

Read and study old-school with our bound texts.

$87.99
  • About
  • Digital Options
  • Contents
  • Authors

About

We see teaching mathematics as a form of story-telling, both when we present in a classroom and when we write materials for exploration and learning. The goal is to explain to you in a captivating manner, at the right pace, and in as clear a way as possible, how mathematics works and what it can do for you.  We find mathematics to be intriguing and immensely beautiful. We want you to feel that way, too.

Digital Options

E-book

Read online (or offline) with all the highlighting and notetaking tools you need to be successful in this course.

Learn More

Contents

Table of Contents

Chapter 1: Precalculus Review
1.1 Real Numbers, Functions, and Graphs
1.2 Linear and Quadratic Functions
1.3 The Basic Classes of Functions
1.4 Trigonometric Functions
1.5 Technology: Calculators and Computers
Chapter Review Exercises

Chapter 2: Limits
2.1 The Limit Idea: Instantaneous Velocity and Tangent Lines
2.2 Investigating Limits
2.3 Basic Limit Laws
2.4 Limits and Continuity
2.5 Indeterminate Forms
2.6 The Squeeze Theorem and Trigonometric Limits
2.7 Limits at Infinity
2.8 The Intermediate Value Theorem
2.9 The Formal Definition of a Limit
Chapter Review Exercises

Chapter 3: Differentiation
3.1 Definition of the Derivative
3.2 The Derivative as a Function
3.3 Product and Quotient Rules
3.4 Rates of Change
3.5 Higher Derivatives
3.6 Trigonometric Functions
3.7 The Chain Rule
3.8 Implicit Differentiation
3.9 Related Rates
Chapter Review Exercises

Chapter 4: Applications of the Derivative
4.1 Linear Approximation and Applications
4.2 Extreme Values
4.3 The Mean Value Theorem and Monotonicity
4.4 The Second Derivative and Concavity
4.5 Analyzing and Sketching Graphs of Functions
4.6 Applied Optimization
4.7 Newton’s Method
Chapter Review Exercises

Chapter 5: Integration
5.1 Approximating and Computing Area
5.2 The Definite Integral
5.3 The Indefinite Integral
5.4 The Fundamental Theorem of Calculus, Part I
5.5 The Fundamental Theorem of Calculus, Part II
5.6 Net Change as the Integral of a Rate of Change
5.7 The Substitution Method
Chapter Review Exercises

Chapter 6: Applications of the Integral
6.1 Area Between Two Curves
6.2 Setting Up Integrals: Volume, Density, Average Value
6.3 Volumes of Revolution: Disks and Washers
6.4 Volumes of Revolution: Cylindrical Shells
6.5 Work and Energy
Chapter Review Exercises

Chapter 7: Exponential and Logarithmic Functions
7.1 The Derivative of f (x) = bx and the Number e
7.2 Inverse Functions
7.3 Logarithmic Functions and Their Derivatives
7.4 Applications of Exponential and Logarithmic Functions
7.5 L’Hopital’s Rule
7.6 Inverse Trigonometric Functions
7.7 Hyperbolic Functions
Chapter Review Exercises

Chapter 8: Techniques of Integration
8.1 Integration by Parts
8.2 Trigonometric Integrals
8.3 Trigonometric Substitution
8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions
8.5 The Method of Partial Fractions
8.6 Strategies for Integration
8.7 Improper Integrals
8.8 Numerical Integration
Chapter Review Exercises

Chapter 9: Further Applications of the Integral
9.1 Probability and Integration
9.2 Arc Length and Surface Area
9.3 Fluid Pressure and Force
9.4 Center of Mass
Chapter Review Exercises

Chapter 10: Introduction to Differential Equations
10.1 Solving Differential Equations
10.2 Models Involving y=k(y-b)
10.3 Graphical and Numerical Methods
10.4 The Logistic Equation
10.5 First-Order Linear Equations
Chapter Review Exercises

Chapter 11: Infinite Series
11.1 Sequences
11.2 Summing an Infinite Series
11.3 Convergence of Series with Positive Terms
11.4 Absolute and Conditional Convergence
11.5 The Ratio and Root Tests and Strategies for Choosing Tests
11.6 Power Series
11.7 Taylor Polynomials
11.8 Taylor Series
Chapter Review Exercises

Chapter 12: Parametric Equations, Polar Coordinates, and Conic Sections
12.1 Parametric Equations
12.2 Arc Length and Speed
12.3 Polar Coordinates
12.4 Area and Arc Length in Polar Coordinates
12.5 Conic Sections
Chapter Review Exercises

Appendices
A. The Language of Mathematics
B. Properties of Real Numbers
C. Induction and the Binomial Theorem
D. Additional Proofs

ANSWERS TO ODD-NUMBERED EXERCISES

REFERENCES

INDEX

Additional content can be accessed online at www.macmillanlearning.com/calculuset4e:

Additional Proofs:
L’Hôpital’s Rule
Error Bounds for Numerical
Integration
Comparison Test for Improper
Integrals

Additional Content:
Second-Order Differential
Equations
Complex Numbers

Authors

Jon Rogawski

Jon Rogawski received his undergraduate and master’s degrees in mathematics simultaneously from Yale University, and he earned his PhD in mathematics from Princeton University, where he studied under Robert Langlands. Before joining the Department of Mathematics at UCLA in 1986, where he was a full professor, he held teaching and visiting positions at the Institute for Advanced Study, the University of Bonn, and the University of Paris at Jussieu and Orsay. Jon’s areas of interest were number theory, automorphic forms, and harmonic analysis on semisimple groups. He published numerous research articles in leading mathematics journals, including the research monograph Automorphic Representations of Unitary Groups in Three Variables (Princeton University Press). He was the recipient of a Sloan Fellowship and an editor of the Pacific Journal of Mathematics and the Transactions of the AMS. As a successful teacher for more than 30 years, Jon Rogawski listened and learned much from his own students. These valuable lessons made an impact on his thinking, his writing, and his shaping of a calculus text. Sadly, Jon Rogawski passed away in September 2011. Jon’s commitment to presenting the beauty of calculus and the important role it plays in students’ understanding of the wider world is the legacy that lives on in each new edition of Calculus.


Colin Adams

Colin Adams is the Thomas T. Read professor of Mathematics at Williams College, where he has taught since 1985. Colin received his undergraduate degree from MIT and his PhD from the University of Wisconsin. His research is in the area of knot theory and low-dimensional topology. He has held various grants to support his research, and written numerous research articles. Colin is the author or co-author of The Knot Book, How to Ace Calculus: The Streetwise Guide, How to Ace the Rest of Calculus: The Streetwise Guide, Riot at the Calc Exam and Other Mathematically Bent Stories, Why Knot?, Introduction to Topology: Pure and Applied, and Zombies & Calculus. He co-wrote and appears in the videos “The Great Pi vs. E Debate” and “Derivative vs. Integral: the Final Smackdown.” He is a recipient of the Haimo National Distinguished Teaching Award from the Mathematical Association of America (MAA) in 1998, an MAA Polya Lecturer for 1998-2000, a Sigma Xi Distinguished Lecturer for 2000-2002, and the recipient of the Robert Foster Cherry Teaching Award in 2003. Colin has two children and one slightly crazy dog, who is great at providing the entertainment.


Robert Franzosa

Robert (Bob) Franzosa is a professor of mathematics at the University of Maine where he has been on the faculty since 1983. Bob received a BS in mathematics from MIT in 1977 and a Ph.D. in mathematics from the University of Wisconsin in 1984. His research has been in dynamical systems and in applications of topology in geographic information systems. He has been involved in mathematics education outreach in the state of Maine for most of his career. Bob is a co-author of Introduction to Topology: Pure and Applied and Algebraic Models in Our World. He was awarded the University of Maine’s Presidential Outstanding Teaching award in 2003. Bob is married, has two children, three step-children, and one recently-arrived grandson.


We see teaching mathematics as a form of story-telling, both when we present in a classroom and when we write materials for exploration and learning. The goal is to explain to you in a captivating manner, at the right pace, and in as clear a way as possible, how mathematics works and what it can do for you.  We find mathematics to be intriguing and immensely beautiful. We want you to feel that way, too.

E-book

Read online (or offline) with all the highlighting and notetaking tools you need to be successful in this course.

Learn More

Table of Contents

Chapter 1: Precalculus Review
1.1 Real Numbers, Functions, and Graphs
1.2 Linear and Quadratic Functions
1.3 The Basic Classes of Functions
1.4 Trigonometric Functions
1.5 Technology: Calculators and Computers
Chapter Review Exercises

Chapter 2: Limits
2.1 The Limit Idea: Instantaneous Velocity and Tangent Lines
2.2 Investigating Limits
2.3 Basic Limit Laws
2.4 Limits and Continuity
2.5 Indeterminate Forms
2.6 The Squeeze Theorem and Trigonometric Limits
2.7 Limits at Infinity
2.8 The Intermediate Value Theorem
2.9 The Formal Definition of a Limit
Chapter Review Exercises

Chapter 3: Differentiation
3.1 Definition of the Derivative
3.2 The Derivative as a Function
3.3 Product and Quotient Rules
3.4 Rates of Change
3.5 Higher Derivatives
3.6 Trigonometric Functions
3.7 The Chain Rule
3.8 Implicit Differentiation
3.9 Related Rates
Chapter Review Exercises

Chapter 4: Applications of the Derivative
4.1 Linear Approximation and Applications
4.2 Extreme Values
4.3 The Mean Value Theorem and Monotonicity
4.4 The Second Derivative and Concavity
4.5 Analyzing and Sketching Graphs of Functions
4.6 Applied Optimization
4.7 Newton’s Method
Chapter Review Exercises

Chapter 5: Integration
5.1 Approximating and Computing Area
5.2 The Definite Integral
5.3 The Indefinite Integral
5.4 The Fundamental Theorem of Calculus, Part I
5.5 The Fundamental Theorem of Calculus, Part II
5.6 Net Change as the Integral of a Rate of Change
5.7 The Substitution Method
Chapter Review Exercises

Chapter 6: Applications of the Integral
6.1 Area Between Two Curves
6.2 Setting Up Integrals: Volume, Density, Average Value
6.3 Volumes of Revolution: Disks and Washers
6.4 Volumes of Revolution: Cylindrical Shells
6.5 Work and Energy
Chapter Review Exercises

Chapter 7: Exponential and Logarithmic Functions
7.1 The Derivative of f (x) = bx and the Number e
7.2 Inverse Functions
7.3 Logarithmic Functions and Their Derivatives
7.4 Applications of Exponential and Logarithmic Functions
7.5 L’Hopital’s Rule
7.6 Inverse Trigonometric Functions
7.7 Hyperbolic Functions
Chapter Review Exercises

Chapter 8: Techniques of Integration
8.1 Integration by Parts
8.2 Trigonometric Integrals
8.3 Trigonometric Substitution
8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions
8.5 The Method of Partial Fractions
8.6 Strategies for Integration
8.7 Improper Integrals
8.8 Numerical Integration
Chapter Review Exercises

Chapter 9: Further Applications of the Integral
9.1 Probability and Integration
9.2 Arc Length and Surface Area
9.3 Fluid Pressure and Force
9.4 Center of Mass
Chapter Review Exercises

Chapter 10: Introduction to Differential Equations
10.1 Solving Differential Equations
10.2 Models Involving y=k(y-b)
10.3 Graphical and Numerical Methods
10.4 The Logistic Equation
10.5 First-Order Linear Equations
Chapter Review Exercises

Chapter 11: Infinite Series
11.1 Sequences
11.2 Summing an Infinite Series
11.3 Convergence of Series with Positive Terms
11.4 Absolute and Conditional Convergence
11.5 The Ratio and Root Tests and Strategies for Choosing Tests
11.6 Power Series
11.7 Taylor Polynomials
11.8 Taylor Series
Chapter Review Exercises

Chapter 12: Parametric Equations, Polar Coordinates, and Conic Sections
12.1 Parametric Equations
12.2 Arc Length and Speed
12.3 Polar Coordinates
12.4 Area and Arc Length in Polar Coordinates
12.5 Conic Sections
Chapter Review Exercises

Appendices
A. The Language of Mathematics
B. Properties of Real Numbers
C. Induction and the Binomial Theorem
D. Additional Proofs

ANSWERS TO ODD-NUMBERED EXERCISES

REFERENCES

INDEX

Additional content can be accessed online at www.macmillanlearning.com/calculuset4e:

Additional Proofs:
L’Hôpital’s Rule
Error Bounds for Numerical
Integration
Comparison Test for Improper
Integrals

Additional Content:
Second-Order Differential
Equations
Complex Numbers

Headshot of Jon Rogawski

Jon Rogawski

Jon Rogawski received his undergraduate and master’s degrees in mathematics simultaneously from Yale University, and he earned his PhD in mathematics from Princeton University, where he studied under Robert Langlands. Before joining the Department of Mathematics at UCLA in 1986, where he was a full professor, he held teaching and visiting positions at the Institute for Advanced Study, the University of Bonn, and the University of Paris at Jussieu and Orsay. Jon’s areas of interest were number theory, automorphic forms, and harmonic analysis on semisimple groups. He published numerous research articles in leading mathematics journals, including the research monograph Automorphic Representations of Unitary Groups in Three Variables (Princeton University Press). He was the recipient of a Sloan Fellowship and an editor of the Pacific Journal of Mathematics and the Transactions of the AMS. As a successful teacher for more than 30 years, Jon Rogawski listened and learned much from his own students. These valuable lessons made an impact on his thinking, his writing, and his shaping of a calculus text. Sadly, Jon Rogawski passed away in September 2011. Jon’s commitment to presenting the beauty of calculus and the important role it plays in students’ understanding of the wider world is the legacy that lives on in each new edition of Calculus.


Headshot of Colin Adams

Colin Adams

Colin Adams is the Thomas T. Read professor of Mathematics at Williams College, where he has taught since 1985. Colin received his undergraduate degree from MIT and his PhD from the University of Wisconsin. His research is in the area of knot theory and low-dimensional topology. He has held various grants to support his research, and written numerous research articles. Colin is the author or co-author of The Knot Book, How to Ace Calculus: The Streetwise Guide, How to Ace the Rest of Calculus: The Streetwise Guide, Riot at the Calc Exam and Other Mathematically Bent Stories, Why Knot?, Introduction to Topology: Pure and Applied, and Zombies & Calculus. He co-wrote and appears in the videos “The Great Pi vs. E Debate” and “Derivative vs. Integral: the Final Smackdown.” He is a recipient of the Haimo National Distinguished Teaching Award from the Mathematical Association of America (MAA) in 1998, an MAA Polya Lecturer for 1998-2000, a Sigma Xi Distinguished Lecturer for 2000-2002, and the recipient of the Robert Foster Cherry Teaching Award in 2003. Colin has two children and one slightly crazy dog, who is great at providing the entertainment.


Headshot of Robert Franzosa

Robert Franzosa

Robert (Bob) Franzosa is a professor of mathematics at the University of Maine where he has been on the faculty since 1983. Bob received a BS in mathematics from MIT in 1977 and a Ph.D. in mathematics from the University of Wisconsin in 1984. His research has been in dynamical systems and in applications of topology in geographic information systems. He has been involved in mathematics education outreach in the state of Maine for most of his career. Bob is a co-author of Introduction to Topology: Pure and Applied and Algebraic Models in Our World. He was awarded the University of Maine’s Presidential Outstanding Teaching award in 2003. Bob is married, has two children, three step-children, and one recently-arrived grandson.


Related Titles

Find Your School

Select Your Discipline

Select Your Course

search icon
No schools matching your search criteria were found !
No active courses are available for this school.
No active courses are available for this discipline.
Can't find your course?

Find Your Course

Confirm Your Course

Enter the course ID provided by your instructor
search icon

We found the following course. Does this look correct?

We found the following course. To properly enroll in your course, please use the link provided in your school's course system (LMS Example: Canvas, Blackboard, D2L, Etc).

Your Achieve account needs to be linked with your school's account.

Find Your School

Select Your Course

No schools matching your search criteria were found.
(Optional)
Select Your Course
No Courses found for your selection.
  • macmillanlearning.com
  • // Privacy Notice
  • // Ads & Cookies
  • // Terms of Purchase/Rental
  • // Terms of Use
  • // Piracy
  • // Products
  • // Site Map
  • // Customer Support
Student store Footer Logo
  • macmillan learning facebook
  • macmillan learning twitter
  • macmillan learning youtube
  • macmillan learning linkedin
  • macmillan learning instagram
We are processing your request. Please wait...