Skip to Main Content
Our Privacy Notice has been updated to explain how we use cookies, which you accept by continuing to use this website. To withdraw your consent, see Your Choices.
  • Instructor Catalog
  • Student Store
  • Canada StoreCanada
Student Store Student Store
    • I'M AN INSTRUCTOR

    • I'M A STUDENT
  • Help
  • search

    Find what you need to succeed.

    search icon
  • Shopping Cart
    0
    • Canada StoreCanada
  • Who We Are

    Who We Are

    back
    • Who We Are
  • Student Benefits

    Student Benefits

    back
    • Special Offers
    • Rent and Save
    • Flexible Formats
    • College Quest Blog
  • Discipline

    Discipline

    back
    • Astronomy Biochemistry Biology Chemistry College Success Communication Economics Electrical Engineering English Environmental Science Geography Geology History Mathematics Music & Theater Nutrition and Health Philosophy & Religion Physics Psychology Sociology Statistics Value
  • Digital Products

    Digital Products

    back
    • Achieve
    • Sapling
    • SaplingPlus
    • LaunchPad
    • LaunchPad Solo
    • E-books
    • FlipIt
    • Student Response System (iclicker/REEF)
    • WebAssign
    • Writer's Help
  • Support

    Support

    back
    • Get Help
    • Rental and Returns
    • Support Community
    • Student Options Explained
Molecular Cell Biology by Harvey Lodish; Arnold Berk; Chris A. Kaiser; Monty Krieger; Anthony Bretscher; Hidde Ploegh; Angelika Amon; Kelsey C. Martin - Eighth Edition, 2016 from Macmillan Student Store
Rental FAQs

GET FREE SHIPPING!

Use Promo Code SHIPFREE at Step 4 of checkout.

*Free Shipping only applicable to US orders. Restrictions apply.

Molecular Cell Biology

Eighth  Edition|©2016  New Edition Available Harvey Lodish; Arnold Berk; Chris A. Kaiser; Monty Krieger; Anthony Bretscher; Hidde Ploegh; Angelika Amon; Kelsey C. Martin

  • Format
  • Packages
E-book from $73.99

ISBN:9781319117191

Bookmark, search, and highlight our mobile-friendly reflowable e-books.

$73.99
Subscribe until 08/23/2021

$185.99
LaunchPad $115.99

ISBN:9781464187452

Spend less and get the e-book, quizzes, and more.


$115.99
Subscribe until 08/24/2021

You will need to find your course in order to purchase LaunchPad.

A grace period may be available for this course.

Visit LaunchPad to find out.

Loose-Leaf $157.99

ISBN:9781464187438

Save money with our loose, 3-hole punched pages.

$157.99
Hardcover from $56.99

ISBN:9781464183393

Read and study old-school with our bound texts.

$56.99
Rent until 05/28/2021

Includes eBook Trial Access

(14-day)


$67.99
Rent until 07/07/2021

Includes eBook Trial Access

(14-day)


$81.99
Rent until 08/26/2021

Includes eBook Trial Access

(14-day)


$130.99
Rent until 02/22/2022

Includes eBook Trial Access

(14-day)


$273.99

Includes eBook Trial Access

(14-day)

Loose-Leaf + LaunchPad $155.99

ISBN:9781319140441

This package includes LaunchPad and Loose-Leaf.

$155.99

You will need to find your course in order to purchase LaunchPad.

Hardcover + LaunchPad from $141.99

ISBN:9781319160715

This package includes Hardcover and LaunchPad.

$141.99
Rent until 07/07/2021

Includes eBook Trial Access

(14-day)

You will need to find your course in order to purchase LaunchPad.


$244.99

Includes eBook Trial Access

(14-day)

You will need to find your course in order to purchase LaunchPad.

  • About
  • Digital Options
  • Contents
  • Authors

About

Focusing on exciting breakthroughs that define the history of cell biology and point to its future, Molecular Cell Biology grounds its coverage in those experiments which help define our understanding of cell biology. Providing an engaging experience, the text incorporates medically relevant examples, where appropriate, to help illustrate the connections between cell biology and health and human disease.

Digital Options

E-book

Read online (or offline) with all the highlighting and notetaking tools you need to be successful in this course.

Learn More

Launchpad

Get the e-book, do assignments, take quizzes, prepare for exams and more, to help you achieve success in class.

Learn More

Contents

Table of Contents

Table of Contents with New Discoveries and Methodologies

Part I. Chemical and Molecular Foundations
1. Molecules, Cells, and Model Organisms
Model organisms Chlamydomonas reinhardtii (for study of flagella, chloroplast formation, photosynthesis, and phototaxis) and Plasmodium falciparum (novel organelles and a complex life cycle)

2. Chemical Foundations

3. Protein Structure and Function
Intrinsically disordered proteins
Chaperone-guided folding and updated chaperone structures
Unfolded proteins and the amyloid state and disease
Hydrogen/deuterium exchange mass spectrometry (HXMS)
Phosphoproteomics

4. Culturing and Visualizing Cells
Two-photon excitation microscopy
Light sheet microscopy
Super resolution microscopy
3D culture matricies and 3D printing

Part II. Biomembranes, Genes, and Gene Regulation
5. Fundamental Molecular Genetic Mechanisms
Ribosome structural comparison across domains shows conserved core

6. Molecular Genetic Techniques
CRISPR/Cas9 system in bacteria and its application in genomic editing

7. Biomembrane Structure

8. Genes, Genomics, and Chromosomes
Chromosome conformation capture techniques reveal topological domains in chromosome territories within the nucleus

9. Transcriptional Control of Gene Expression
DNase I hypersensitivity mapping reveals cell developmental history
Long non-coding RNAs involved in X-inactivation in mammals
ENCODE databases

10. Post-transcriptional Gene Control
Improved discussion of mRNA degradation pathways and RNA surveillance in the cytoplasm
Nuclear bodies: P bodies, Cajal bodies, histone locus bodies, speckles, paraspeckles, and PML-nuclear bodies

Part III. Cellular Organization and Function
11. Transmembrane Transport of Ions and Small Molecules
GLUT1 molecular model and transport cycle

12. Cellular Energetics

13. Moving Proteins into Membranes and Organelles
Expanded discussion of the pathway for import of PTS1-bearing proteins into the peroxisomal matrix

14. Vesicular Traffic, Secretion, and Endocytosis
Expanded discussion of Rab proteins and their role in vesicle fusion with target membranes

15. Signal Transduction and G Protein–Coupled Receptors
Human G protein-coupled receptors of pharmaceutical importance

16. Signaling Pathways That Control Gene Expression
Wnt concentration gradients in planaria development and regeneration
Inflammatory hormones in adipose cell function and obesity
Regulation of insulin and glucagon function in control of blood glucose

17. Cell Organization and Movement I: Microfilaments
Use of troponins as an indicator of the severity of a heart attack

18. Cell Organization and Movement II: Microtubules and Intermediate Filaments

Neurofilaments and keratins involved in skin integrity, epidermolysus bullosa simplex
New structures and understanding of function of dynein and dynactin

19. The Eukaryotic Cell Cycle
The Hippo pathway
Spindle checkpoint assembly and nondisjunction and aneuploidy in mice, and nondisjunction increases with maternal age

Part IV. Cell Growth and Differentiation
20. Integrating Cells Into Tissues
Expanded discussion of the functions of the extracellular matrix and the role of cells in assembling it
Mechanotransduction
Structure of cadherins and their cis and trans interactions
Cadherins as receptors for Class C rhinoviruses and asthma
Improved discussion of microfibrils in elastic tissue and in LTBP-mediated TGF-B signaling
Tunneling nanotubes
Functions of WAKs in plants as pectin receptors

21. Stem Cells, Cell Asymmetry, and Cell Death
Pluripotency of mouse ES cells and the potential of differentiated cells derived from iPS and ES cells in treating various diseases
Pluripotent ES cells in planaria
Cells in intestinal crypts can dedifferentiate to replenish intestinal stem cells
Cdc42 and feedback loops that control cell polarity

22. Cells of the Nervous System
Prokaryotic voltage-gated Na+ channel structure, allowing comparison with voltage-gated K+ channels
Optogenetics techniques for linking neural circuits with behavior
Mechanisms of synaptic plasticity that govern learning and memory

23. Immunology
Inflammasomes and non-TLR nucleic sensors
Expanded discussion of somatic hypermutation
Improved discussion of the MHC molecule classes, MHC-peptide complexes and their interactions with T-cells
Lineage commitment of T cells
Tumor immunology

24. Cancer
The characteristics of cancer cells and how they differ from normal cells
How carcinogens lead to mutations and how mutations accumulate to cancer

Authors

Harvey Lodish

HARVEY LODISH is Professor of Biology and Professor of Biological Engineering at the Massachusetts Institute of Technology and a Founding Member of the Whitehead Institute for Biomedical Research. Dr. Lodish is also a member of the National Academy of Sciences and the American Academy of Arts and Sciences and was President (2004) of the American Society for Cell Biology. He is well known for his work on cell-membrane physiology, particularly the biosynthesis of many cell-surface proteins, and on the cloning and functional analysis of several cell-surface receptor proteins, such as the erythropoietin and TGF–β receptors. His laboratory also studies long noncoding RNAs and microRNAs that regulate the development and function of hematopoietic cells and adipocytes. Dr. Lodish teaches undergraduate and graduate courses in cell biology and biotechnology.


Arnold Berk

ARNOLD BERK holds the UCLA Presidential Chair in Molecular Cell Biology in the Department of Microbiology, Immunology, and Molecular Genetics and is a member of the Molecular Biology Institute at the University of California, Los Angeles. Dr. Berk is also a fellow of the American Academy of Arts and Sciences. He is one of the discoverers of RNA splicing and of mechanisms for gene control in viruses. His laboratory studies the molecular interactions that regulate transcription initiation in mammalian cells, focusing in particular on adenovirus regulatory proteins. He teaches an advanced undergraduate course in cell biology of the nucleus and a graduate course in the biochemistry of gene expression.


Chris A. Kaiser

Chris A. Kaiser is Professor and Head of the Department of Biology at the Massachusetts Institute of Technology. His laboratory uses genetic and cell biological methods to understand the basic processes of how newly synthesized membrane and secretory proteins are folded and stored in the compartments of the secretory pathway. Dr. Kaiser is recognized as a top undergraduate educator at MIT, where he has taught genetics to undergraduates for many years.


Monty Krieger

MONTY KRIEGER is the Whitehead Professor in the Department of Biology at the Massachusetts Institute of Technology and a Senior Associate Member of the Broad Institute of MIT and Harvard. Dr. Krieger is also a member of the National Academy of Sciences. For his innovative teaching of undergraduate biology and human physiology as well as graduate cell biology courses, he has received numerous awards. His laboratory has made contributions to our understanding of membrane trafficking through the Golgi apparatus and has cloned and characterized receptor proteins important for pathogen recognition and the movement of cholesterol into and out of cells, including the HDL receptor.


Anthony Bretscher

ANTHONY BRETSCHER is Professor of Cell Biology at Cornell University and a member of the Weill Institute for Cell and Molecular Biology. His laboratory is well known for identifying and characterizing new components of the actin cytoskeleton and elucidating their biological functions in relation to cell polarity and membrane traffic. For this work, his laboratory exploits biochemical, genetic, and cell biological approaches in two model systems, vertebrate epithelial cells and the budding yeast. He is a fellow of the American Academy of Arts and Sciences. Dr. Bretscher teaches cell biology to undergraduates at Cornell University.


Hidde Ploegh

HIDDE PLOEGH is a senior investigator in the Program of Cellular and Molecular Medicine at Boston Children’s Hospital, where he studies the biochemistry of the immune system. A Member of the National Academy of Science and the American Academy of Arts and Sciences, he is one of the world’s leading researchers in the molecular understanding of immune system cells and the mechanisms by which viruses evade detection by the immune system. Prior to his current position he was a professor at the Massachusetts Institute of Technology and Harvard Medical School, where he taught immunology and cell biology.


Angelika Amon

ANGELIKA AMON is Professor of Biology at the Massachusetts Institute of Technology, a member of the Koch Institute for Integrative Cancer Research, and Investigator at the Howard Hughes Medical Institute. She is also a member of the National Academy of Sciences. Her laboratory studies the molecular mechanisms that govern chromosome segregation during mitosis and meiosis and the consequences—aneuploidy—when these mechanisms fail during normal cell proliferation and cancer development. Dr. Amon teaches undergraduate and graduate courses in cell biology and genetics.


Kelsey C. Martin

KELSEY C. MARTIN is Professor of Biological Chemistry and Psychiatry and Dean of the David Geffen School of Medicine at the University of California, Los Angeles. She is the former Chair of the Biological Chemistry Department. Her laboratory studies the ways in which experience changes connections between neurons in the brain to store long-term memories—a process known as synaptic plasticity. She has made important contributions to elucidating the molecular and cell biological mechanisms that underlie this process. Dr. Martin teaches basic principles of neuroscience to undergraduates, graduate students, dental students, and medical students.


Focusing on exciting breakthroughs that define the history of cell biology and point to its future, Molecular Cell Biology grounds its coverage in those experiments which help define our understanding of cell biology. Providing an engaging experience, the text incorporates medically relevant examples, where appropriate, to help illustrate the connections between cell biology and health and human disease.

E-book

Read online (or offline) with all the highlighting and notetaking tools you need to be successful in this course.

Learn More

Launchpad

Get the e-book, do assignments, take quizzes, prepare for exams and more, to help you achieve success in class.

Learn More

Table of Contents

Table of Contents with New Discoveries and Methodologies

Part I. Chemical and Molecular Foundations
1. Molecules, Cells, and Model Organisms
Model organisms Chlamydomonas reinhardtii (for study of flagella, chloroplast formation, photosynthesis, and phototaxis) and Plasmodium falciparum (novel organelles and a complex life cycle)

2. Chemical Foundations

3. Protein Structure and Function
Intrinsically disordered proteins
Chaperone-guided folding and updated chaperone structures
Unfolded proteins and the amyloid state and disease
Hydrogen/deuterium exchange mass spectrometry (HXMS)
Phosphoproteomics

4. Culturing and Visualizing Cells
Two-photon excitation microscopy
Light sheet microscopy
Super resolution microscopy
3D culture matricies and 3D printing

Part II. Biomembranes, Genes, and Gene Regulation
5. Fundamental Molecular Genetic Mechanisms
Ribosome structural comparison across domains shows conserved core

6. Molecular Genetic Techniques
CRISPR/Cas9 system in bacteria and its application in genomic editing

7. Biomembrane Structure

8. Genes, Genomics, and Chromosomes
Chromosome conformation capture techniques reveal topological domains in chromosome territories within the nucleus

9. Transcriptional Control of Gene Expression
DNase I hypersensitivity mapping reveals cell developmental history
Long non-coding RNAs involved in X-inactivation in mammals
ENCODE databases

10. Post-transcriptional Gene Control
Improved discussion of mRNA degradation pathways and RNA surveillance in the cytoplasm
Nuclear bodies: P bodies, Cajal bodies, histone locus bodies, speckles, paraspeckles, and PML-nuclear bodies

Part III. Cellular Organization and Function
11. Transmembrane Transport of Ions and Small Molecules
GLUT1 molecular model and transport cycle

12. Cellular Energetics

13. Moving Proteins into Membranes and Organelles
Expanded discussion of the pathway for import of PTS1-bearing proteins into the peroxisomal matrix

14. Vesicular Traffic, Secretion, and Endocytosis
Expanded discussion of Rab proteins and their role in vesicle fusion with target membranes

15. Signal Transduction and G Protein–Coupled Receptors
Human G protein-coupled receptors of pharmaceutical importance

16. Signaling Pathways That Control Gene Expression
Wnt concentration gradients in planaria development and regeneration
Inflammatory hormones in adipose cell function and obesity
Regulation of insulin and glucagon function in control of blood glucose

17. Cell Organization and Movement I: Microfilaments
Use of troponins as an indicator of the severity of a heart attack

18. Cell Organization and Movement II: Microtubules and Intermediate Filaments

Neurofilaments and keratins involved in skin integrity, epidermolysus bullosa simplex
New structures and understanding of function of dynein and dynactin

19. The Eukaryotic Cell Cycle
The Hippo pathway
Spindle checkpoint assembly and nondisjunction and aneuploidy in mice, and nondisjunction increases with maternal age

Part IV. Cell Growth and Differentiation
20. Integrating Cells Into Tissues
Expanded discussion of the functions of the extracellular matrix and the role of cells in assembling it
Mechanotransduction
Structure of cadherins and their cis and trans interactions
Cadherins as receptors for Class C rhinoviruses and asthma
Improved discussion of microfibrils in elastic tissue and in LTBP-mediated TGF-B signaling
Tunneling nanotubes
Functions of WAKs in plants as pectin receptors

21. Stem Cells, Cell Asymmetry, and Cell Death
Pluripotency of mouse ES cells and the potential of differentiated cells derived from iPS and ES cells in treating various diseases
Pluripotent ES cells in planaria
Cells in intestinal crypts can dedifferentiate to replenish intestinal stem cells
Cdc42 and feedback loops that control cell polarity

22. Cells of the Nervous System
Prokaryotic voltage-gated Na+ channel structure, allowing comparison with voltage-gated K+ channels
Optogenetics techniques for linking neural circuits with behavior
Mechanisms of synaptic plasticity that govern learning and memory

23. Immunology
Inflammasomes and non-TLR nucleic sensors
Expanded discussion of somatic hypermutation
Improved discussion of the MHC molecule classes, MHC-peptide complexes and their interactions with T-cells
Lineage commitment of T cells
Tumor immunology

24. Cancer
The characteristics of cancer cells and how they differ from normal cells
How carcinogens lead to mutations and how mutations accumulate to cancer

Harvey Lodish

HARVEY LODISH is Professor of Biology and Professor of Biological Engineering at the Massachusetts Institute of Technology and a Founding Member of the Whitehead Institute for Biomedical Research. Dr. Lodish is also a member of the National Academy of Sciences and the American Academy of Arts and Sciences and was President (2004) of the American Society for Cell Biology. He is well known for his work on cell-membrane physiology, particularly the biosynthesis of many cell-surface proteins, and on the cloning and functional analysis of several cell-surface receptor proteins, such as the erythropoietin and TGF–β receptors. His laboratory also studies long noncoding RNAs and microRNAs that regulate the development and function of hematopoietic cells and adipocytes. Dr. Lodish teaches undergraduate and graduate courses in cell biology and biotechnology.


Arnold Berk

ARNOLD BERK holds the UCLA Presidential Chair in Molecular Cell Biology in the Department of Microbiology, Immunology, and Molecular Genetics and is a member of the Molecular Biology Institute at the University of California, Los Angeles. Dr. Berk is also a fellow of the American Academy of Arts and Sciences. He is one of the discoverers of RNA splicing and of mechanisms for gene control in viruses. His laboratory studies the molecular interactions that regulate transcription initiation in mammalian cells, focusing in particular on adenovirus regulatory proteins. He teaches an advanced undergraduate course in cell biology of the nucleus and a graduate course in the biochemistry of gene expression.


Chris A. Kaiser

Chris A. Kaiser is Professor and Head of the Department of Biology at the Massachusetts Institute of Technology. His laboratory uses genetic and cell biological methods to understand the basic processes of how newly synthesized membrane and secretory proteins are folded and stored in the compartments of the secretory pathway. Dr. Kaiser is recognized as a top undergraduate educator at MIT, where he has taught genetics to undergraduates for many years.


Monty Krieger

MONTY KRIEGER is the Whitehead Professor in the Department of Biology at the Massachusetts Institute of Technology and a Senior Associate Member of the Broad Institute of MIT and Harvard. Dr. Krieger is also a member of the National Academy of Sciences. For his innovative teaching of undergraduate biology and human physiology as well as graduate cell biology courses, he has received numerous awards. His laboratory has made contributions to our understanding of membrane trafficking through the Golgi apparatus and has cloned and characterized receptor proteins important for pathogen recognition and the movement of cholesterol into and out of cells, including the HDL receptor.


Anthony Bretscher

ANTHONY BRETSCHER is Professor of Cell Biology at Cornell University and a member of the Weill Institute for Cell and Molecular Biology. His laboratory is well known for identifying and characterizing new components of the actin cytoskeleton and elucidating their biological functions in relation to cell polarity and membrane traffic. For this work, his laboratory exploits biochemical, genetic, and cell biological approaches in two model systems, vertebrate epithelial cells and the budding yeast. He is a fellow of the American Academy of Arts and Sciences. Dr. Bretscher teaches cell biology to undergraduates at Cornell University.


Hidde Ploegh

HIDDE PLOEGH is a senior investigator in the Program of Cellular and Molecular Medicine at Boston Children’s Hospital, where he studies the biochemistry of the immune system. A Member of the National Academy of Science and the American Academy of Arts and Sciences, he is one of the world’s leading researchers in the molecular understanding of immune system cells and the mechanisms by which viruses evade detection by the immune system. Prior to his current position he was a professor at the Massachusetts Institute of Technology and Harvard Medical School, where he taught immunology and cell biology.


Angelika Amon

ANGELIKA AMON is Professor of Biology at the Massachusetts Institute of Technology, a member of the Koch Institute for Integrative Cancer Research, and Investigator at the Howard Hughes Medical Institute. She is also a member of the National Academy of Sciences. Her laboratory studies the molecular mechanisms that govern chromosome segregation during mitosis and meiosis and the consequences—aneuploidy—when these mechanisms fail during normal cell proliferation and cancer development. Dr. Amon teaches undergraduate and graduate courses in cell biology and genetics.


Kelsey C. Martin

KELSEY C. MARTIN is Professor of Biological Chemistry and Psychiatry and Dean of the David Geffen School of Medicine at the University of California, Los Angeles. She is the former Chair of the Biological Chemistry Department. Her laboratory studies the ways in which experience changes connections between neurons in the brain to store long-term memories—a process known as synaptic plasticity. She has made important contributions to elucidating the molecular and cell biological mechanisms that underlie this process. Dr. Martin teaches basic principles of neuroscience to undergraduates, graduate students, dental students, and medical students.


Related Titles

Find Your School

Select Your Discipline

Select Your Course

search icon
No schools matching your search criteria were found !
No active courses are available for this school.
No active courses are available for this discipline.
Can't find your course?

Find Your Course

Confirm Your Course

Enter the course ID provided by your instructor
search icon

Find Your School

Select Your Course

No schools matching your search criteria were found.
(Optional)
Select Your Course
No Courses found for your selection.
  • macmillanlearning.com
  • // Privacy Notice
  • // Ads & Cookies
  • // Terms of Purchase/Rental
  • // Terms of Use
  • // Piracy
  • // Products
  • // Site Map
  • macmillan learning facebook
  • macmillan learning twitter
  • macmillan learning youtube
  • macmillan learning linkedin
  • macmillan learning linkedin
We are processing your request. Please wait...