# Calculus Early Transcendentals Single Variable

## Third EditionJon Rogawski

©2015
Loose-Leaf
C$112.99

ISBN:9781464193767

Save money with our loose, 3-hole punched pages.

C$112.99

Hardcover
from
C$39.99

ISBN:9781464171741

Read and study old-school with our bound texts.

C$39.99

C$46.99

C$55.99

C$85.99

C$168.99

Student Solutions Manual for Calculus Early Transcendentals (Single Variable)
C$61.99

ISBN:9781464171888

Read and study old-school with our bound texts.

C$61.99

**This alternative version of Rogawski and Adams’ Calculus: Early Transcendentals includes chapters 1-11 of the Third Edition, and is ideal for instructors who just want coverage of topics in single variable calculus.**

*Calculus*offers an ideal balance of formal precision and dedicated conceptual focus, helping students build strong computational skills while continually reinforcing the relevance of calculus to their future studies and their lives. Guided by new author Colin Adams, the new edition stays true to the late Jon Rogawski’s refreshing and highly effective approach, while drawing on extensive instructor and student feedback, and Adams’ three decades as a calculus teacher and author of math books for general audiences. The Third Edition is also a fully integrated text/media package, with its own dedicated version of WebAssign.

**Maximize Teaching and Learning with WebAssign Premium**

Macmillan Learning and WebAssign have partnered to deliver WebAssign *Premium* – a comprehensive and flexible suite of resources for your calculus course. Combining the most widely used online homework platform with authoritative textbook content and Macmillan’s esteemed Calctools, WebAssign *Premium* extends and enhances the classroom experience for instructors and students. Preview course content and sample assignments at www.webassign.net/whfreeman.

## Table of Contents

**Rogawski/Adams: Calculus Early Transcendentals 3e, Single Variable Table of Contents**

**Chapter 1: Precalculus Review**

1.1 Real Numbers, Functions, and Graphs

1.2 Linear and Quadratic Functions

1.3 The Basic Classes of Functions

1.4 Trigonometric Functions

1.5 Inverse Functions

1.6 Exponential and Logarithmic Functions

1.7 Technology: Calculators and Computers

Chapter Review Exercises

**Chapter 2: Limits**

2.1 Limits, Rates of Change, and Tangent Lines

2.2 Limits: A Numerical and Graphical Approach

2.3 Basic Limit Laws

2.4 Limits and Continuity

2.5 Evaluating Limits Algebraically

2.6 Trigonometric Limits

2.7 Limits at Infinity

2.8 Intermediate Value Theorem

2.9 The Formal Definition of a Limit

Chapter Review Exercises

**Chapter 3: Differentiation**

3.1 Definition of the Derivative

3.2 The Derivative as a Function

3.3 Product and Quotient Rules

3.4 Rates of Change

3.5 Higher Derivatives

3.6 Trigonometric Functions

3.7 The Chain Rule

3.8 Implicit Differentiation

3.9 Derivatives of General Exponential and Logarithmic Functions

3.10 Related Rates

Chapter Review Exercises

**Chapter 4: Applications of the Derivative**

4.1 Linear Approximation and Applications

4.2 Extreme Values

4.3 The Mean Value Theorem and Monotonicity

4.4 The Shape of a Graph

4.5 L’Hopital’s Rule

4.6 Graph Sketching and Asymptotes

4.7 Applied Optimization

4.8 Newton’s Method

Chapter Review Exercises

**Chapter 5: The Integral**

5.1 Approximating and Computing Area

5.2 The Definite Integral

5.3 The Indefinite Integral

5.4 The Fundamental Theorem of Calculus, Part I

5.5 The Fundamental Theorem of Calculus, Part II

5.6 Net Change as the Integral of a Rate

5.7 Substitution Method

5.8 Further Transcendental Functions

5.9 Exponential Growth and Decay

Chapter Review Exercises

**Chapter 6: Applications of the Integral**

6.1 Area Between Two Curves

6.2 Setting Up Integrals: Volume, Density, Average Value

6.3 Volumes of Revolution

6.4 The Method of Cylindrical Shells

6.5 Work and Energy

Chapter Review Exercises

**Chapter 7: Techniques of Integration**

7.1 Integration by Parts

7.2 Trigonometric Integrals

7.3 Trigonometric Substitution

7.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions

7.5 The Method of Partial Fractions

7.6 Strategies for Integration

7.7 Improper Integrals

7.8 Probability and Integration

7.9 Numerical Integration

Chapter Review Exercises

**Chapter 8: Further Applications of the Integral and Taylor Polynomials**

8.1 Arc Length and Surface Area

8.2 Fluid Pressure and Force

8.3 Center of Mass

8.4 Taylor Polynomials

Chapter Review Exercises

**Chapter 9: Introduction to Differential Equations**

9.1 Solving Differential Equations

9.2 Models Involving y^'=k(y-b)

9.3 Graphical and Numerical Methods

9.4 The Logistic Equation

9.5 First-Order Linear Equations

Chapter Review Exercises

**Chapter 10: Infinite Series**

10.1 Sequences

10.2 Summing an Infinite Series

10.3 Convergence of Series with Positive Terms

10.4 Absolute and Conditional Convergence

10.5 The Ratio and Root Tests

10.6 Power Series

10.7 Taylor Series

Chapter Review Exercises

**Chapter 11: Parametric Equations, Polar Coordinates, and Conic Sections**

11.1 Parametric Equations

11.2 Arc Length and Speed

11.3 Polar Coordinates

11.4 Area and Arc Length in Polar Coordinates

11.5 Conic Sections

Chapter Review Exercises