# Calculus: Early Transcendentals Multivariable

## Fourth EditionJon Rogawski; Colin Adams; Robert Franzosa

©2019
E-book
from
C$58.99

ISBN:9781319270377

Bookmark, search, and highlight our mobile-friendly reflowable e-books.

C$58.99

C$113.99

Paperback
from
C$47.99

ISBN:9781319055929

Read and study old-school with our bound texts.

C$47.99

C$54.99

C$62.99

C$93.99

C$167.99

Paperback + Achieve for Calculus: Early Transcendentals (1-Term Online)
from
C$119.99

ISBN:9781319379490

This package includes Achieve and Paperback.

C$119.99

C$173.99

## E-book

Read online (or offline) with all the highlighting and notetaking tools you need to be successful in this course.

Learn More## Achieve

Achieve is a single, easy-to-use platform proven to engage students for better course outcomes

Learn More## Table of Contents

**Chapter 10: Infinite Series**

10.1 Sequences

10.2 Summing an Infinite Series

10.3 Convergence of Series with Positive Terms

10.4 Absolute and Conditional Convergence

10.5 The Ratio and Root Tests and Strategies for Choosing Tests

10.6 Power Series

10.7 Taylor Polynomials

10.8 Taylor Series

Chapter Review Exercises

**Chapter 11: Parametric Equations, Polar Coordinates, and Conic Sections**11.1 Parametric Equations

11.2 Arc Length and Speed

11.3 Polar Coordinates

11.4 Area and Arc Length in Polar Coordinates

11.5 Conic Sections

Chapter Review Exercises

**Chapter 12: Vector Geometry**

12.1 Vectors in the Plane

12.2 Three-Dimensional Space: Surfaces, Vectors, and Curves

12.3 Dot Product and the Angle Between Two Vectors

12.4 The Cross Product

12.5 Planes in 3-Space

12.6 A Survey of Quadric Surfaces

12.7 Cylindrical and Spherical

Coordinates

Chapter Review Exercises

**Chapter 13: Calculus of Vector-Valued Functions**

13.1 Vector-Valued Functions

13.2 Calculus of Vector-Valued Functions

13.3 Arc Length and Speed

13.4 Curvature

13.5 Motion in 3-Space

13.6 Planetary Motion According to Kepler and Newton

Chapter Review Exercises

**Chapter 14: Differentiation in Several Variables**

14.1 Functions of Two or More Variables

14.2 Limits and Continuity in Several Variables

14.3 Partial Derivatives

14.4 Differentiability, Tangent Planes, and Linear Approximation

14.5 The Gradient and Directional Derivatives

14.6 Multivariable Calculus Chain Rules

14.7 Optimization in Several Variables

14.8 Lagrange Multipliers: Optimizing with a Constraint

Chapter Review Exercises

**Chapter 15: Multiple Integration**

15.1 Integration in Two Variables

15.2 Double Integrals over More General Regions

15.3 Triple Integrals

15.4 Integration in Polar, Cylindrical, and Spherical Coordinates

15.5 Applications of Multiple Integrals

15.6 Change of Variables

Chapter Review Exercises

**Chapter 16: Line and Surface Integrals**

16.1 Vector Fields

16.2 Line Integrals

16.3 Conservative Vector Fields

16.4 Parametrized Surfaces and Surface Integrals

16.5 Surface Integrals of Vector Fields

Chapter Review Exercises

**Chapter 17: Fundamental Theorems of Vector Analysis**

17.1 Green’s Theorem

17.2 Stokes’ Theorem

17.3 Divergence Theorem

Chapter Review Exercises

**Appendices A1**A. The Language of Mathematics

B. Properties of Real Numbers

C. Induction and the Binomial Theorem

D. Additional Proofs

ANSWERS TO ODD-NUMBERED EXERCISES

REFERENCES

INDEX

Additional content can be accessed online at www.macmillanlearning.com/calculuset4e:

**Additional Proofs:**L’Hôpital’s Rule

Error Bounds for Numerical

Integration

Comparison Test for Improper

Integrals

**Additional Content:**Second-Order Differential

Equations

Complex Numbers